Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom*

نویسندگان

  • Taynná Vernalha Rocha Almeida
  • Arno Lotar Cordova Junior
  • Pedro Argolo Piedade
  • Cintia Mara da Silva
  • Priscila Marins
  • Cristiane Maria Almeida
  • Gabriela R. Baseggio Brincas
  • Danyel Scheidegger Soboll
چکیده

OBJECTIVE To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. MATERIALS AND METHODS We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. RESULTS For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. CONCLUSION The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Construction and Evaluation of an Anthropomorphic Head Phantom for Assessment of Image Distortion in Stereotactic Radiosurgery Planning Systems

Introduction: In recent years, the use of magnetic resonance (MR) images in radiation treatment planning has drawn considerable attention. However, although the extent of a tumor can be determined in great detail on MR images, the geometric accuracy of these images is limited by distortions stemming from the inhomogeneity of the static background magnetic field, the nonlineari...

متن کامل

Six degrees of freedom CBCT‐based positioning for intracranial targets treated with frameless stereotactic radiosurgery

Frameless radiosurgery is an attractive alternative to the framed procedure if it can be performed with comparable precision in a reasonable time frame. Here, we present a positioning approach for frameless radiosurgery based on in-room volumetric imaging coupled with an advanced six-degrees-of-freedom (6 DOF) image registration technique which avoids use of a bite block. Patient motion is rest...

متن کامل

The spatial accuracy of two frameless, linear accelerator‐based systems for single‐isocenter, multitarget cranial radiosurgery

Single-isocenter, multitarget cranial stereotactic radiosurgery (SRS) is more efficient than using an isocenter for each target, but spatial positioning uncertainties can be magnified at locations away from the isocenter. This study reports on the spatial accuracy of two frameless, linac-based SRS systems for multitarget, single-isocenter SRS as a function of distance from the isocenter. One sy...

متن کامل

Assessment of image co-registration accuracy for frameless gamma knife surgery

Image co-registration is used in frameless gamma knife radiosurgery (GKSRS) to assign a stereotactic coordinate system and verify patient setup before irradiation. The accuracy of co-registration with cone beam computed tomography (CBCT) images of a Gamma Knife IconTM (GK Icon) was assessed, and the effects of the region of co-registration (ROC) were studied. CBCT-to-CBCT co-registration is use...

متن کامل

A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom

Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2016